
HASHKFK
BETHASH官方网站(访问: hash.cyou 领取999USDT)
再比如游戏和泛娱行业,今年备受关注的《黑神话:悟空》在Steam上全球销量突破2300万份,突破性的拿下了2024年TGA的最佳动作游戏大奖。还有我的客户点点互动的《无尽寒冬》《Whiteout Survival》连续登顶出海手游收入榜。以及在美国iOS娱乐排行榜排名第一的短视频应用 ReelShort。这些出海成功案例与中国上市公司密切相关,例如世纪华通,其最大业务亮点就来自《无尽寒冬》;而中文在线今年股价大幅上涨,最重要的原因来自于出海业务的扩张,也就是ReelShort。
在快速发展方面,游戏行业提供了很好的案例。以沐瞳公司的手游《决胜巅峰》(MLBB)为例,他们在开拓东南亚市场时面临小语种本地化的挑战。传统的机器学习翻译方案主要针对中文、日文、英文、德文等主流语言,对小语种的支持较弱,且受限于训练数据不足。但通过生成式AI技术,在输入行业专有数据和小语种数据后,他们开发出了更好的解决方案。比如一些游戏玩家常用词缩写,如一起冲或者“挂机”的简称,在不同语言中可能有独特的表达方式,传统翻译软件难以准确转换,而生成式AI则可以很好地解决这个问题,大大降低了市场进入门槛。
技术的快速迭代也加剧了企业间的竞争,这一点在出海企业中表现得尤为明显。无论是上证50、上证300,还是美国标普500指数成分股的更替速度可能会远超过去十年。英伟达股票的显著涨幅以及AI相关产品的快速增长都印证了这一点。在这个时代,对于出海企业而言,关键在于如何拥抱科技,特别是生成式AI,将其从概念层面转化为切实的业务价值。自两年前大语言模型横空出世以来,各类模型不断涌现,这不仅标志着AI时代的到来,也为企业发展带来了新的机遇和挑战。
各行各业都在积极尝试AI应用。上周我在美国参加亚马逊的re:Invent大会,亚马逊CEO Andy Jassy发布了公司自己的Nova大模型。值得一提的是,亚马逊已经在电商领域的多个场景应用了大模型,比如客户评论分析和购物助手。举个例子,如果你想了解在跑步机上和绿道上跑步时鞋子的区别,只需向亚马逊提问,系统就会解释差异并推荐合适的产品。这与传统的百度搜索不同,传统搜索需要用户自己判断信息的准确性,然后还要单独去挑选品牌下单,而AI购物场景让这个过程变得更加流畅。
首要的是获得高管层面的认同和支持,这一点极其重要。因为这里面首先涉及到几个原因,一个原因是数据,特别是跨部门的数据。以一个游戏公司为例,相关数据通常分散在多个部门:用户增长部门掌握用户行为数据,制作人所在的游戏运营部门掌握游戏内容和运营数据,研发部门则掌握技术实现相关的数据。这些部门通常都是相对独立运作的,如果缺少任何一个部门的数据,AI应用的效果都会大打折扣。没有高层的推动,很难打破这种部门间的数据壁垒。
第二个关键步骤是组建一个多元化的跨学科团队。这个团队需要既懂业务又理解AI模型。在组建这样的团队时,企业通常面临两个选择:一是完全自建团队,招募AI专家和算法工程师,但这种方式成本很高,特别是现在市场上AI人才的薪资水平节节攀升;二是借助像亚马逊云科技这样的专业公司提供的技术支持和架构师服务。我们观察到,大多数客户倾向于选择后者,因为生成式AI项目往往始于创意验证阶段,收益还不确定,通过利用平台现有的技术能力,可以在控制成本的同时快速验证想法的可行性。这种方式能让企业在不承担过高人力成本的情况下,灵活地开展AI创新。
第五步,反复测试,这点特别重要。这来自于我们与客户合作的深刻经验中,即便是与腾讯、米哈游、携程、得物这样体量的客户合作开展生成式AI项目时,测试阶段通常都需要持续4-6个月。这么长的测试周期主要是为了在性能、性价比和准确率三个维度之间找到最佳平衡点。比如在准确率方面,需要反复测试不同场景下的表现;在性能方面,需要确保响应速度满足业务需求;在成本方面,则需要评估长期运营的经济性。另一个延长测试周期的原因是,在这3-4个月的测试期间,市场上往往会出现新的模型和更优惠的成本结构,团队总希望能跟上技术发展的步伐,不断尝试新的可能性。