咨询热线

HASHKFK

BETHASH新闻资讯
您当前的位置: 首页 > BETHASH新闻资讯 > BETHASH玩法
BETHASH玩法 BETHASH新闻

BETHASH追问daily 气味的单神经元表征;神经现象学的数学视角;内感受与情绪调节的关联

时间:2024-10-18 15:13:21
更多
  

  BETHASH官方网站(访问: hash.cyou 领取999USDT)

BETHASH追问daily 气味的单神经元表征;神经现象学的数学视角;内感受与情绪调节的关联

  研究团队通过在波恩大学医院接受癫痫诊断的患者的大脑中植入电极,记录他们在闻到各种气味(如新鲜水果、腐坏的鱼)时的神经元活动。研究显示,大脑中的单个神经细胞可以预测特定的气味及其情绪关联。其中初级嗅觉皮层不仅能够精确辨别气味,还可以对视觉信息做出反应。同时,杏仁核对气味的情绪反应有所差异,海马体与气味的识别表现有关。此外,研究发现神经元会对气味、图像以及相关的文字信息产生反应,这表明嗅觉处理中涉及多模态整合以及概念编码机制。这些发现不仅验证了动物研究的结果,还为未来开发嗅觉辅助设备铺平了道路。研究发表在 Nature 上。

  研究采用了新型单细胞测序技术snm3C-seq(单细胞核甲基化和染色质结构捕获联合测序),对超过53,000个大脑细胞进行分析,揭示了从中期妊娠到成年期间的基因调控变化。研究发现,DNA甲基化和染色质三维结构的动态重组在时间上是相互独立的。短程染色质相互作用主要出现在神经元中,而长程相互作用则更多见于胶质细胞和其他非脑组织。进一步分析显示,精神分裂症相关的基因变异体集中于特定细胞类型的染色质环连接调控区域,这表明这些区域可能是神经精神疾病的潜在发病点。

  研究团队采用了一种双管齐下的方法来量化OPCs对突触的修剪。第一种方法利用腺相关病毒(AAV)标记神经元突触,通过荧光信号区分突触位于吞噬溶酶体内外的状态,结合对OPCs的免疫染色,精确分析30-50个OPCs的突触吞噬情况。第二种方法则从解离的脑组织中分离出OPCs,使用荧光抗体标记突触前蛋白,并通过流式细胞术对数万个OPCs进行分析。这两种方法大大提高了突触修剪的检测精度,并可应用于其他胶质细胞的研究。研究结果显示,OPCs在修剪突触时不仅是被动的,而是有选择地吞噬特定的突触。研究团队还发现,这些细胞可能在脑癌和阿尔茨海默病等疾病中起到重要作用。本次研究发表在 Nature Protocols 上。

  研究通过对两只猕猴(分别为M和P)的中部颞区(MT区)进行神经记录,观察光流对其运动方向判断任务的影响。实验中,猕猴需要判断目标物体在模拟向前或向后的自我运动背景下的运动方向,分别进行39次记录,涉及727个MT区的神经单元。研究显示,在存在光流背景时,猕猴的感知方向会发生系统性的偏差,偏差程度随着光流强度和物体在视觉场位置的不同而变化。这种偏差符合光流解析的预期,即感知上的偏离方向与光流方向相反。

  PainWaive系统利用脑电图(EEG)神经反馈技术帮助患者管理疼痛。系统通过轻便的EEG头戴设备记录大脑电活动,并在平板电脑应用中为用户提供实时反馈,用户可以通过互动游戏调节大脑状态,从而减轻神经性疼痛。研究团队设计了四种互动游戏,例如一个火箭游戏,当用户的脑电波达到理想状态时,火箭就会升空。这一过程帮助大脑通过神经反馈重新组织神经通路,逐渐学会在日常生活中调节疼痛。PainWaive的试点研究已完成,StoPain随机对照试验将于2025年启动,参与者将在四周内完成20次疗程。研究旨在进一步验证EEG神经反馈的镇痛效果,并为神经性疼痛患者提供一种非侵入性、家庭可实施的治疗选择。研究发表在 Spinal Cord 上。

  WorldScribe通过结合视觉、语言和声音识别技术,构建了一个实时描述生成流程。工具能够根据用户的需求和环境状况进行自适应调整,包括在噪音环境中自动调节音量、针对稳定或动态的视觉场景生成不同级别的描述等。描述生成流程基于三种AI模型的配合:YOLO World用于快速生成简短描述,Moondream提供中等详尽程度的描述,GPT-4负责生成复杂的细节说明。实验中,研究人员让盲人参与者佩戴连接智能手机的头戴设备,测试表明WorldScribe能够实时生成准确的物体描述,帮助用户更好地理解环境。用户研究还揭示了一些限制,如某些小物体检测的困难。此外,参与者建议未来可以将该工具集成到智能眼镜或其他可穿戴设备中,以提升日常使用的便利性。

  RoVi-Aug算法旨在解决现有机器人数据集中的不平衡问题,这些数据集中某些机器人的演示数据和视角占据主导地位,导致模型泛化能力不足。该算法使用先进的扩散模型对图像数据进行增强,通过生成不同机器人的合成任务演示图像,从而扩展数据集的多样性。RoVi-Aug框架包含两个主要模块:机器人增强模块(Ro-Aug)和视角增强模块(Vi-Aug)。Ro-Aug通过对机器人进行分割和替换,生成新的机器人演示数据;Vi-Aug则利用最新的视角合成模型ZeroNVS,生成场景的不同视角,从而提高模型对多种相机视角的适应能力。

  实验结果显示,通过对增强后的数据进行训练,RoVi-Aug能够实现新机器人在完全不同视角下的零样本部署,并且与此前的Mirage算法相比无需在测试时进行额外处理,也不需要预设的相机参数。此外,RoVi-Aug还能支持策略的微调,与原始数据集联合训练,成功率提高了30%。研究团队目前正与丰田研究院(Toyota Research Labs)等机构合作,计划将该算法应用到现有的机器人数据集上,以进一步提高多任务策略的灵活性和鲁棒性。

  研究团队采用微分几何框架,将神经网络的权重空间视为具有度量张量的曲率黎曼流形,能够实现灵活的网络更新和知识保持。FIP算法通过在权重空间内寻找满足不同目标的路径,实现了多种机器学习任务的兼容性,如提高对抗鲁棒性、持续学习和稀疏化能力。实验表明,FIP算法在对大型语言模型、视觉转换器、卷积神经网络等应用中的性能达到了最先进水平。此外,该算法还能在较低的计算成本下,实现对神经网络的灵活适应,具有广泛的应用潜力。研究发表在 Nature Machine Intelligence 上。

地址:广东省广州市   电话:HASHKFK
传真:0896-98589990
ICP备案编号:
Copyright © 2012-2024 BETHASH竞技游戏工作室有限公司 版权所有